MAIN IIII E

MAINTENANCE, RENEWAL AND
IMPROVEMENT OF RAIL TRANSPORT
INFRASTRUCTURE TO REDUCE
ECONOMIC AND
ENVIRONMENTAL IMPACT

Björn Paulsson, UIC/TRV, Project Manager

Lennart Elfgren, Thomas Blanksvärd, LTU, Scientific & Technical Coordinators

CIR Meeting Göteborg 2013-01-29

This project is co-funded by the European Commission with the FP7

Presentation of the MAINLINE Project

2

Background

Builds on earlier projects as Sustainable Bridges (2003-07)

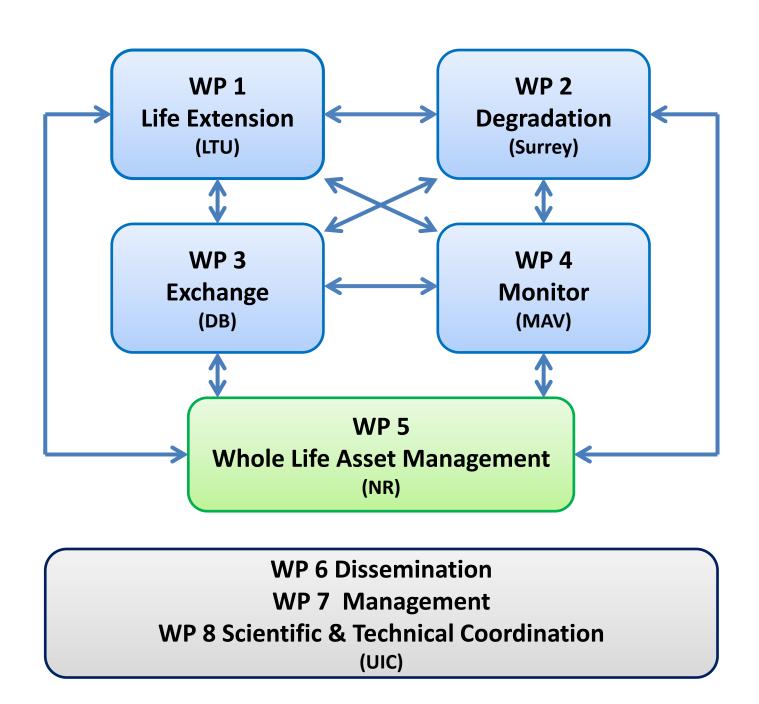
Scope

- Make rail infrastructure more cost effective
- Model degradation due to increased traffic and time/age
- Create tools for whole life assessment to make it possible to balance economic end environmental costs

Presentation of the MAINLINE Project

3 years (Oct 2011 - Sept 2014) Total budget 4.5 M€ (3 M€ from EC) Project Manager: Björn Paulsson, UIC/TRV + ARTTIC/FR

19 Participants whereof:


- 7 Infrastructure Managers (DB, NR, MAV, TCDD, TRV, SETRA, UIC)
- 2 Contractors (COMSA, SKANSKA)
- 5 Consultants (COWI, DAMILL, SKM, TWI, ARTTIC)
- 5 Universities (Barcelona, Graz, LTU-SBU, Minho, Surrey)
- from 11 countries (AT, CZ, DE, DK, ES, FR, HU, PT, SE, TR, UK)

Swedish Participants: Damill (D Larsson); TRV (B Paulsson & A Carolin); LTU-SBU (L Elfgren, Th Blanksvärd, B Täljsten, J Nilima, U Kumar & M Veljkovics/LTU, O Larsson/LTH, K Lundgren & M Plos/Chalmers, R Karoumi & H Sundquist, KTH)

Partners in the MAINLINE Project

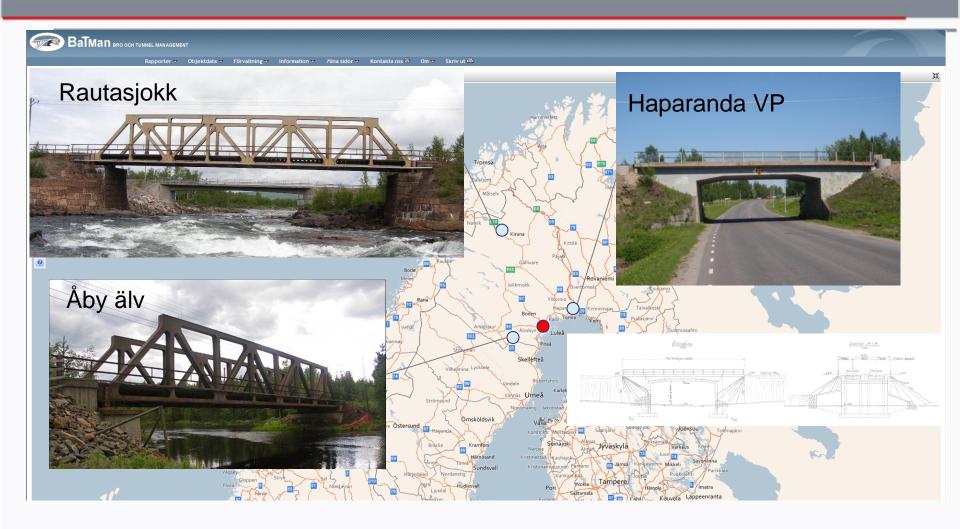
N°	Org.	Short Name	Country
1	UIC	UIC	FR
2	Network Rail I	NR	UK
3	COWI	COWI	DK
4	Sinclair Knight Merz	SKM	UK
5	University of Surrey	Surrey	UK
6	TWI Ltd	TWI	UK
7	University of Minho	UMINHO	PT
8	Luleå tekniska universitet	LTU-SBU	SE
9	DB Netz AG	DB	DE
10	MÁV Magyar Államvasutak Zrt	MAV	HU

N°	Org.	Short Name	Countr y
11	Universitat Politècnica de Catalunya	UPC	ES
12	Graz University of Technology	TUGraz	AT
13	TCDD	TCDD	TR
14	DAMILL AB	DAMILL	SE
15	COMSA EMTE	COMSA	ES
16	TRAFIKVERKET	TRV	SE
17	SETRA	SETRA	FR
18	ARTTIC	ARTTIC	FR
19	Skanska a.s	SKANSKA	CZ

WP1 Extend Life

 Explore and evaluate new technologies to extend life of old infrastructure

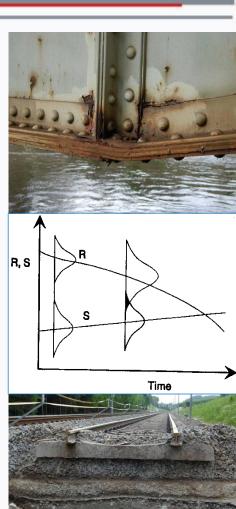
- Develop assessment methods to determine if the life can be extended
- Develop new technologies and a guideline for the application
- Transfer knowledge to Eastern Europe and developing economies


WP1 Extend Life

Tests are made on three bridges:

- Post-stressing of a concrete trough bridge (Shear capacity)
- Test to failure of a steel truss bridge (Stability, Fatigue, Rivets)
- Test of strains in a steel sister bridge With additional funding from Trafikverket and Hjalmar Lundbohm Research Centre

Three bridges to be tested/upgraded


WP2 Degradation & structural models

Asset types identified as focus areas:

- Cuttings
- Metallic bridges
- Tunnels with concrete/masonry linings
- Plain line and switches & crossings
- Retaining walls

Deliverables

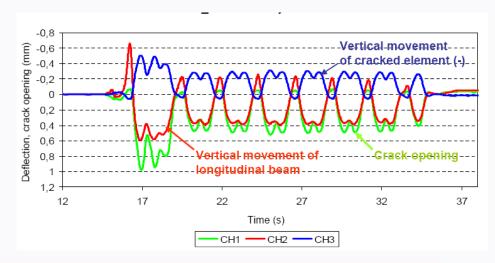
- Model of different degradation types
- Effect of changes due to maintenance, repair and strengthening
- Validate models through case studies

WP 3 Replacement of obsolete infrastructure

- Benchmark of new technologies Methods used across Europe.
- Development of new construction methods to replace old infrastructure

WP 3 Replacement of obsolete infrastructure

 Development of new construction methods to replace old infrastructure


How can we enhance existing methods?

WP 4 Monitoring and examination techniques

- Case study in Hungary on a steel truss bridge:
 - repair of a fatigue crack with FRP
 - monitoring and examination
 - evaluation of data
- Questionnaire on monitoring and examination techniques
- Revision of documents of interacting WP-s

WP5 Whole life environmental and economic asset management

- Benchmark existing asset management tools for Life Cycle Analysis (LCA) and Life Cycle Costs (LCC)
- Develop a Life Cycle Assessment Tool (LCAT) for
 - Bridges (metallic underline) & Tunnels
 - Earthwork cuttings & Retaining walls
 - Track (Plain line, Switches & crossings)

Presentation of the MAINLINE Project

Thank you for your kind attention!

